
Speeding up computation with a filesystem of network RAM
Colin Schimmelfing '10, Advisor: Tia Newhall ~ Swarthmore College, Swarthmore PA

What is Nswap? Adding an API to Nswap

• When a computer runs out of RAM, it tries to 'swap' to disk
• 'Swapping' treats the disk as if it was RAM

• Problem: hard disks are one million times slower than RAM

• Storing data across the network in idle RAM is faster than disk

• Nswap allows a computer to 'borrow' RAM from other
 computers on the network

• Transparent to the program, handled at operating system level

(Programmer does not need to do anything to use Nswap)

Implementation Experiments Future Work

Results

• Created a temporary filesystem that resides on the idle RAM of
computers in the local network

Needs to support multiple modes:
Swapping mode, with page-size requests and garbage collection (GC)

• GC is needed to free up memory for future use from programs that
have finished- RAM can be used again

Filesystem mode, with smaller requests and no GC
• Can't use GC- no applications claim files, so GC thinks that files can

be collected

 One problem: we don’t want to use too much memory to keep track of
where our pages are.

• Solution: Index into our original page-size structures

• Application Programming Interface (API) allows programmer direct
interaction with Nswap

•Why do we want this?
• More control to programmers can increase performance- they know the

characteristics of their own data

• Specify which elements of memory could be farther away (on the network)

• Could provide greater resources to programs which try not to swap

• Currently programmers have no control; Nswap is transparent

• Filesystem interface is useful for data that must be written and read repeatedly
to and from the disk.
• Instead, Nswap is the ‘disk’- significantly faster access times

• The large pool of RAM interface is useful because some programs will limit
their memory usage and will not use swap space

• Swap space interface is the original Nswap, computer can not distinguish
between fast and slow swap devices

Experiments
• Discover a fix to TPIE issue
• Try running with STXXL, another library for larger-than-

memory datasets

New Interfaces
• Malloc-like interface to Nswap
• Other memory interfaces, such as mmap
• Provide an estimate of the network RAM available

Other Improvements
• Tune Nswap parameters to maximize filesystem

performance
• Add flash memory capability
• Work on persistence for the filesystem

Comparing filesystem performance between Nswap and disk

Experiment 1: Direct write to files
• Simple writes and reads to files on disk and files on our Nswap filesystem

• Should be best case for disk compared to Nswap

Experiment 2: External merge sort performance
• External merge sort allows sorting without all
 of the data in memory at a time

• As long as two of the smallest units can fit in
 memory, the sort can be completed

• Requires many reads and writes to disk

Experiment 3: TPIE, a library for large data sets
• TPIE implements fast algorithms for data sets too

large to fit in memory

Merge Sort

• Optimized for disk, sequential reads and writes

• Ran the TPIE external merge sort algorithm

Nswap could be used as:
• A filesystem
• Fast swap device
• Large pool of RAM,

visible to programs
(malloc, mmap, etc.)

Ex 1: seconds, 390.625 MB (100,000 pages

Ex2: 100MB, seconds or minutes

Ex 3:

• Data structures have
page-size (4 KB)
granularity

• Data sent in only as
many smaller chunks
(512 Bytes) as we need
saves bandwidth

What can an API do?

Simple Reads and Writes

Writes

External Merge Sort

Disk Disk

Reads

Nswap Nswap

Disk

Disk Nswap

Nswap

TPIE

• Simple, sequential reads and writes to a file

• Nswap is about ⅓ faster than disk

• 1600 MB of data, sorting
100 MB at a time in
memory

• Nswap is again about
 ⅓ faster than disk

• Large dataset shows that
Nswap can scale to real-
sized datasets

• 390.625 MB of data (100,000 pages at 4 KB each)

• 300 MB of data with 30 MB of memory allowed
for the merge sort

• The data is stored either on disk or on Nswap-
The memory is not swapped- only local memory

• TPIE is about ¼ faster than Nswap!

• This seems impossible, since disk is slower even
for large continuous writes, disk’s best case

	Slide 1

