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What is Nswap? Adding an API to Nswap

• When a computer runs out of RAM, it tries to 'swap' to disk
• 'Swapping' treats the disk as if it was RAM

• Problem: hard disks are one million times slower than RAM

• Storing data across the network in idle RAM is faster than disk

• Nswap allows a computer to 'borrow' RAM from other 
 computers on the network

• Transparent to the program, handled at operating system level

(Programmer does not need to do anything to use Nswap)

Implementation Experiments Future Work

Results

• Created a temporary filesystem that resides on the idle RAM of 
computers in the local network 

Needs to support multiple modes: 
Swapping mode, with page-size requests and garbage collection (GC)

• GC is needed to free up memory for future use from programs that 
have finished- RAM can be used again 

Filesystem mode, with smaller requests and no GC
• Can't use GC- no applications claim files, so GC thinks that files can 

be collected

 One problem: we don’t want to use too much memory to keep track of 
where our pages are.

• Solution: Index into our original page-size structures

•  Application Programming Interface (API) allows programmer direct 
interaction with Nswap 

•Why do we want this?
• More control to programmers can increase performance- they know the 

characteristics of their own data

• Specify which elements of memory could be farther away (on the network)

• Could provide greater resources to programs which try not to swap

• Currently programmers have no control; Nswap is transparent

• Filesystem interface is useful for data that must be written and read repeatedly 
to and from the disk.
• Instead, Nswap is the ‘disk’- significantly faster access times

•  The large pool of RAM interface is useful because some programs will limit 
their memory usage and will not use swap space

• Swap space interface is the original Nswap, computer can not distinguish 
between fast and slow swap devices

Experiments 
• Discover a fix to TPIE issue
• Try running with STXXL, another library for larger-than-

memory datasets     

New Interfaces
• Malloc-like interface to Nswap
• Other memory interfaces, such as mmap
• Provide an estimate of the network RAM available

Other Improvements
• Tune Nswap parameters to maximize filesystem 

performance    
• Add flash memory capability
• Work on persistence for the filesystem

Comparing filesystem performance between Nswap and disk

Experiment 1: Direct write to files
•   Simple writes and reads to files on disk and files on our Nswap filesystem

•   Should be best case for disk compared to Nswap

Experiment 2: External merge sort performance
• External merge sort allows sorting without all                
     of the data in memory at a time

• As long as two of the smallest units can fit in                
        memory, the sort can be completed

•   Requires many reads and writes to disk

Experiment 3: TPIE, a library for large data sets
•  TPIE implements fast algorithms for data sets too 

large to fit in memory

Merge Sort

•  Optimized for disk, sequential reads and writes

•  Ran the TPIE external merge sort algorithm

Nswap could be used as:
•  A filesystem
• Fast swap device
• Large pool of RAM, 

visible to programs 
(malloc, mmap, etc.)

Ex 1:   seconds, 390.625 MB (100,000 pages

Ex2: 100MB, seconds or minutes

Ex 3:

•  Data structures have 
page-size (4 KB) 
granularity

•  Data sent in only as 
many smaller chunks 
(512 Bytes) as we need 
saves bandwidth

What can an API do?

Simple Reads and Writes
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Disk Disk

Reads

Nswap Nswap

Disk

Disk Nswap

Nswap

TPIE

•  Simple, sequential reads and writes to a file

•  Nswap is about ⅓ faster than disk 

•  1600 MB of data, sorting 
100 MB at a time in 
memory 

• Nswap is again about
 ⅓ faster than disk 

• Large dataset shows that 
Nswap can scale to real-
sized datasets 

• 390.625 MB of data  (100,000 pages at 4 KB each)

•  300 MB of data with 30 MB of memory allowed 
for the merge sort

• The data is stored either on disk or on Nswap-
The memory is not swapped- only local memory

• TPIE is about ¼ faster than Nswap!

• This seems impossible, since disk is slower even 
for large continuous writes, disk’s best case
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